ディープ・ラーニングでがんを見つける?|がん検診を人工知能が行なう時代になる!?


Enlitic

参考画像:The wonderful and terrifying implications of computers that can learn | Jeremy Howard | TEDxBrussels|YouTubeスクリーンショット




がん検診は人工知能で!Deep Learningが悪性腫瘍を見逃さない

(2015/8/5、ITpro)

人工知能をがん検診に応用することで、悪性腫瘍を高精度で見つけ出す技術の開発が進んでいる。メディカルイメージをDeep Learningの手法で解析すると、熟練した医師より正確にがん組織などの病変を見つけ出す。

人工知能をがん検診に活用する技術の開発が進んでいるそうです。

■ディープ・ラーニングでがんを見つける?

サンフランシスコに拠点を置くベンチャー企業Enliticは、Deep Learningを医療データに応用したシステムを開発している。イメージデータをDeep Learningの手法で解析し、病気を判定する(上の写真)。イメージデータにはレントゲン写真、MRI、CTスキャン、顕微鏡写真などが使われる。検査結果に悪性腫瘍などがあるかどうかを高速にかつ正確に判定する。

ディープ・ラーニング(深層学習・機械学習)について知らない方のために、「コンテンツの秘密」(著:川上量生)では、ディープラーニングのことをこのように説明しています。

ディープ・ラーニングとは、簡単に説明すると、なにかを学習するときに、いちどに全部を学習するのではなく、基礎から応用へと何段階かに分けて学習するような学習方法のことです。

つまり、ディープ・ラーニングとは、多くの段階に分けて学習を行うことです。

今回紹介したEnliticのシステムは、おそらくディープ・ラーニングの手法で組織構造の特徴を学習させ、被験者の組織画像から悪性腫瘍があるかどうかを組織構造の特性から探し出すものだと思われます。

YouTube Preview Image

The wonderful and terrifying implications of computers that can learn | Jeremy Howard | TEDxBrussels

■IBMのWatsonとの違いは?

IBM Watsonは、人工知能を医療分野に応用し成果を上げているが、Enliticのアプローチとは大きく異なる。Watsonは、Cognitive Computingと呼ばれ、大量のデータから意味を引き出すことを目的とする。医学論文や臨床試験結果など、大量のドキュメントを読み込み、そこから治療に関する知見を得る。医師が治療方針を決定する際に利用する(上の写真)。

一方、Enliticは、Deep Learningの手法でメディカルイメージを解析し症状を判定する。イメージ解析ツールとして位置づけられ、医師の視覚として活躍している。さらにDeep Learningの特性とし、高速で学習する能力を備えている。つまりEnliticは、短時間で熟練医師を超える能力を獲得する。両者共に人工知能を医療分野に適用しているが、そのアーキテクチャーは大きく異なる。

IBMの「WATSON」によってがん治療がスピードアップする!?によれば、Watsonは膨大な量の医療データや論文などのデータベースが格納されており、患者のデータを高速で解析し、医療データを照らし合わせることで、患者に最も最適と思われる治療方針を提案することで、医師や患者が意思決定の支援をするシステムです。

同じ人工知能を活用するシステムといっても、がん治療に対するアプローチは全く違っています。

しかし、人工知能「Watson」に医療画像解析を追加|IBM、Merge Healthcareを10億ドルで買収によれば、IBMは、医療用画像解析技術をMerge Healthcareを買収することで、Watsonに医療画像分析の機能を追加しようとしていると思われるので、その違いは小さくなるかもしれません。

■まとめ

今後は、人工知能を医療に活用されるようになり、IBMのWatsonとEnliticのような画像診断を組み合わせたものもできてくるでしょう。

大事なことは、より多くの患者のデータを得て、より精度の高いシステムを作り上げることです。

そのためには、病院同士が連携して、データを共有していくことが大事になっていくのではないでしょうか。







【関連記事】

【ビッグデータ関連記事】

Comments

comments

Powered by Facebook Comments