「ディープラーニング」タグアーカイブ

ディープラーニング×医療|deep learningでがんを見つける?|がん検診を人工知能が行なう時代になる!?




【目次】

■がん検診を人工知能が行なう時代になる!?

Enlitic
Enlitic

参考画像:The wonderful and terrifying implications of computers that can learn | Jeremy Howard | TEDxBrussels|YouTubeスクリーンショット

がん検診は人工知能で!Deep Learningが悪性腫瘍を見逃さない

(2015/8/5、ITpro)

人工知能をがん検診に応用することで、悪性腫瘍を高精度で見つけ出す技術の開発が進んでいる。メディカルイメージをDeep Learningの手法で解析すると、熟練した医師より正確にがん組織などの病変を見つけ出す。

人工知能をがん検診に活用する技術の開発が進んでいるそうです。

■ディープ・ラーニングでがんを見つける?

サンフランシスコに拠点を置くベンチャー企業Enliticは、Deep Learningを医療データに応用したシステムを開発している。イメージデータをDeep Learningの手法で解析し、病気を判定する(上の写真)。イメージデータにはレントゲン写真、MRI、CTスキャン、顕微鏡写真などが使われる。検査結果に悪性腫瘍などがあるかどうかを高速にかつ正確に判定する。

今回紹介したEnliticのシステムは、おそらくディープ・ラーニングの手法で組織構造の特徴を学習させ、被験者の組織画像から悪性腫瘍があるかどうかを組織構造の特性から探し出すものだと思われます。

The wonderful and terrifying implications of computers that can learn | Jeremy Howard | TEDxBrussels




■ディープ・ラーニングとは?

ディープラーニングとはそもそも何なのでしょうか?

「コンテンツの秘密」(著:川上量生)では、ディープラーニングのことをこのように説明しています。

ディープ・ラーニングとは、簡単に説明すると、なにかを学習するときに、いちどに全部を学習するのではなく、基礎から応用へと何段階かに分けて学習するような学習方法のことです。

ディープ・ラーニングとは、多くの段階に分けて学習を行うことのようですが、具体的にはよくわかりません。

天才プログラマーが予測する「AIが導く未来」 人間の「なんとなく」は合理的に判断される

(2017/8/24、東洋経済オンライン)

言い方を変えると、今までのコンピュータによる最適化の能力では、答えは基本的に1つしかない。それがディープラーニングだと、答えがそもそもないのです。「確たる答えはないけど、なんとなくこう」っていうのがディープラーニングです。

人工知能の動向(2016/3/17、NRI)では、機械学習とディープラーニングの違いについて次のように紹介しています。

従来の機械学習とディープラーニングの違い
従来の機械学習とディープラーニングの違い

参考画像:人工知能の動向(2016/3/17、NRI)

従来の機械学習とは、人間が特徴を定義するため、複雑な特徴を表現できないという弱点があります。

ディープラーニング(深層学習)とは、機械学習の手法の一つで、人工知能が学習データから特徴を抽出、つまり、AI自身がデータからルールと知識を獲得していく方法です。

Machine Learning and Human Bias|YouTube

機械学習において重要なことは、多くの学習データを用意することなのですが、例えば、Googleは、機械学習用データを集めるために、落書きをしてもらうサービスを提供しています。

【参考リンク】

ビッグデータとは何か|平成24年版情報通信白書|総務省によれば、ICT(情報通信技術)の進展により、多種多量なデータ(ビッグデータ)を生成・収集・蓄積することが可能になったのですが、このことも機械学習が注目されるようになった背景としてあります。

ディープラーニングは「音声認識」「画像認識」「言語処理」などで用いられていて、画像認識に関しては、例えばECサイトでの商品画像による商品検索に活用されているそうです。

AI活用事例|ディープラーニングの商品検索への応用
AI活用事例|ディープラーニングの商品検索への応用

参考画像:人工知能の動向(2016/3/17、NRI)

Enliticの場合は、レントゲン写真、MRI、CTスキャン、顕微鏡写真などの画像データをディープラーニングで学習させ病気を判定することに活用していると考えられます。

→ AI(人工知能)と機械学習(マシンラーニング)と深層学習(ディープラーニング)の違いとは? について詳しくはこちら

■IBMのWatsonとの違いは?

IBM Watsonは、人工知能を医療分野に応用し成果を上げているが、Enliticのアプローチとは大きく異なる。Watsonは、Cognitive Computingと呼ばれ、大量のデータから意味を引き出すことを目的とする。医学論文や臨床試験結果など、大量のドキュメントを読み込み、そこから治療に関する知見を得る。医師が治療方針を決定する際に利用する(上の写真)。

一方、Enliticは、Deep Learningの手法でメディカルイメージを解析し症状を判定する。イメージ解析ツールとして位置づけられ、医師の視覚として活躍している。さらにDeep Learningの特性とし、高速で学習する能力を備えている。つまりEnliticは、短時間で熟練医師を超える能力を獲得する。両者共に人工知能を医療分野に適用しているが、そのアーキテクチャーは大きく異なる。

IBMの「WATSON」によってがん治療がスピードアップする!?によれば、Watsonは膨大な量の医療データや論文などのデータベースが格納されており、患者のデータを高速で解析し、医療データを照らし合わせることで、患者に最も最適と思われる治療方針を提案することで、医師や患者が意思決定の支援をするシステムです。

同じ人工知能を活用するシステムといっても、がん治療に対するアプローチは全く違っています。

しかし、人工知能「Watson」に医療画像解析を追加|IBM、Merge Healthcareを10億ドルで買収によれば、IBMは、医療用画像解析技術をMerge Healthcareを買収することで、Watsonに医療画像分析の機能を追加しようとしていると思われるので、その違いは小さくなるかもしれません。

■まとめ

今後は、人工知能を医療に活用されるようになり、IBMのWatsonとEnliticのような画像診断を組み合わせたものもできてくるでしょう。

大事なことは、より多くの患者のデータを得て、より精度の高いシステムを作り上げることです。

そのためには、病院同士が連携して、データを共有していくことが大事になっていくのではないでしょうか。







【関連記事】
続きを読む ディープラーニング×医療|deep learningでがんを見つける?|がん検診を人工知能が行なう時代になる!?

機械学習を活用した電子カルテデータの解析により、糖尿病治療薬の効果を予測・比較する技術を開発|日立製作所

健康・美容チェック > 糖尿病 > 機械学習を活用した電子カルテデータの解析により、糖尿病治療薬の効果を予測・比較する技術を開発|日立製作所




■機械学習を活用した電子カルテデータの解析により、糖尿病治療薬の効果を予測・比較する技術を開発|日立製作所

HP manager Regine Pohl demonstrating the webOS based Touchpad Tablet @ DLD DLDWomen 2011

by innovate360(画像:Creative Commons)

電子カルテデータの解析により、糖尿病治療薬の効果を予測・比較する技術を開発

(2017/11/6、日立製作所ニュースリリース)

患者への投薬開始から90日後の時点で、糖尿病の代表的な指標であるHbA1c値の低減目標(治療目標)を達成できる確率を、薬の種類別に計算し、予測することで、患者にとって最も治療効果が高いと見込前れる薬の選定を支援可能です。

日立製作所は、ユタ大学が有する約9000症例の糖尿病患者の電子カルテデータのうち、約6800症例のデータを基に、機械学習を活用し解析することで、糖尿病治療薬の効果を予測し、比較する技術を開発したそうです。

今回、その技術を残りの約2200症例の糖尿病患者のデータに適用してシミュレーションしたところ、90日後の糖尿病の治療結果を高精度に予測できることが確認できたそうです。

以前、過去の糖尿病患者のビッグデータを用いて、新たな患者の症状の進行や薬の効果を予測するシステムを開発|国立病院機構長崎川棚医療センターと富士通などでは、国立病院機構長崎川棚医療センターと富士通など、過去の糖尿病患者の治療経過を集めたビッグデータを用いて、新たな患者の症状の進行や薬の効果を予測するシステムを開発したというニュースを紹介しました。

今回発表された技術はその考え方に近いものであるようですね。




■医療に関するビッグデータをテクノロジー(AIや機械学習、ディープラーニングなど)で解析するシステム

最近では、医療に関するビッグデータをテクノロジー(AIや機械学習、ディープラーニングなど)で解析するシステムに関する発表が相次いでいます。

テクノロジーと医療分野のトレンド|ウェアラブルデバイス・健康アプリ・医学研究|メアリー・ミーカー(MARY MEEKER)レポートで紹介したレポート(スライド300)によれば、インプットのデジタル化の増加によって、医療データは年間成長率は48%となっているそうです。

また、レポート(スライド302)によれば、インプットされるデータ量が増えていくことで、科学論文引用が増加しており、医学研究・知識は3.5年ごとに倍増しているそうです。

以前取り上げたIBMの「WATSON」によってがん治療がスピードアップする!?によれば、医療従事者は、膨大な数の情報(最新の医療研究、論文、医療データ、患者の医療記録)を取り扱っていて、すでに人の頭脳では把握することができないほどなのだそうです。

そこで、注目を集めているのが、人工知能で医師や患者をサポートするシステムであり、その代表的なものがWatsonです。

Watsonは膨大な量の医療データや論文などのデータベースが格納されており、患者のデータを高速で解析し、医療データを照らし合わせることで、患者に最も最適と思われる治療方針を提案することで、医師や患者が意思決定の支援をするシステムです。

現在でも様々ながんの治療法(外科手術、抗がん剤による化学療法、放射線治療など)があります。

そして、がんの遺伝子を解析して患者ごとの診断を行い、がんを引き起こす特定の変異細胞を狙った治療ということも実現しています。

しかし、がんと立ち向かうことは、時間との闘いなのですが、がんの遺伝子を解析して患者ごとの診断を行い、治療方針を決める際には、専門の医師によるチームでも数週間という長い時間を要してしまうのが現状です。

Watsonを活用することで、遺伝子情報の解析、医療データや論文などと照らし合わせる作業の時間短縮が可能になります。

今後は、テクノロジー(AI、機械学習、ディープラーニングなど)による解析が低価格で行われるようになることによって、蓄積されるデータの量が増え、またそれに合わせて医学論文などの文献も飛躍的に増加するため、ますますコンピュータの力を活用することが重要になってくることでしょう。

そして、テクノロジー(AI、機械学習、ディープラーニングなど)を活用した画像認識による病気診断システム同士をつないだり、研究結果から得られた知見をつなぎ合わせるプラットフォームが必要になってくるのではないでしょうか。

DIAMONDハーバード・ビジネス・レビュー 17年8月号 (ブロックチェーンの衝撃)

新品価格
¥2,060から
(2017/11/8 21:40時点)

「DIAMONDハーバード・ビジネス・レビュー 17年8月号 (ブロックチェーンの衝撃)」によれば、別のシステムを結び付けるという仕組みによる脆弱性について書かれてあります。

複数のビットコイン取引所がハッキングされてビットコインの評判を落としたが、この事例で明らかになったのはブロックチェーン自体の脆弱性ではなく、複数の当事者がそれぞれ別のシステムを結び付けてブロックチェーンを使うという仕組みの脆弱性だった

医療ビックデータ解析にテクノロジーを活用する場合の共通のプラットフォームがあれば、お互いの知見同士を活用しあえるようになり、さらなる発展が期待できるのではないでしょうか?

【関連記事】

■コンピュータが出した答えに対して、人間が後付けで理論や因果関係を考えていく

もう一つ必要になるのは、AI自身がデータからルールと知識を獲得していき、なんとなくの答えを出すというのがディープラーニングの特徴であるのですが、人間はそのなんとなくの答えに後付けで理論をつけていく必要があるため、この分野が重要になってくると思われます。

ディープラーニングとはそもそも何なのでしょうか?

「コンテンツの秘密」(著:川上量生)では、ディープラーニングのことをこのように説明しています。

ディープ・ラーニングとは、簡単に説明すると、なにかを学習するときに、いちどに全部を学習するのではなく、基礎から応用へと何段階かに分けて学習するような学習方法のことです。

ディープ・ラーニングとは、多くの段階に分けて学習を行うことのようですが、具体的にはよくわかりません。

天才プログラマーが予測する「AIが導く未来」 人間の「なんとなく」は合理的に判断される

(2017/8/24、東洋経済オンライン)

言い方を変えると、今までのコンピュータによる最適化の能力では、答えは基本的に1つしかない。それがディープラーニングだと、答えがそもそもないのです。「確たる答えはないけど、なんとなくこう」っていうのがディープラーニングです。

人工知能の動向(2016/3/17、NRI)では、機械学習とディープラーニングの違いについて次のように紹介しています。

参考画像:人工知能の動向(2016/3/17、NRI)

従来の機械学習とは、人間が特徴を定義するため、複雑な特徴を表現できないという弱点があります。

ディープラーニング(深層学習)とは、機械学習の手法の一つで、人工知能が学習データから特徴を抽出、つまり、AI自身がデータからルールと知識を獲得していく方法です。

Machine Learning and Human Bias|YouTube

機械学習において重要なことは、多くの学習データを用意することなのですが、例えば、Googleは、機械学習用データを集めるために、落書きをしてもらうサービスを提供しています。

【参考リンク】

ビッグデータとは何か|平成24年版情報通信白書|総務省によれば、ICT(情報通信技術)の進展により、多種多量なデータ(ビッグデータ)を生成・収集・蓄積することが可能になったのですが、このことも機械学習が注目されるようになった背景としてあります。

ディープラーニングは「音声認識」「画像認識」「言語処理」などで用いられていて、画像認識に関しては、例えばECサイトでの商品画像による商品検索に活用されているそうです。

参考画像:人工知能の動向(2016/3/17、NRI)

電王・Ponanza開発者が語る、理由がわからないけどスゴイ“怠惰な並列化”

(2016/10/26、ASCII.jp)

体感で言えば、LazySMPは実はプログラマーには人気がない手法です。なぜかと言えば、前述のように結局のところどうしてうまくいくのか、その正確なところがプログラマーにはわからないからです。ディープラーニングも本質的にどうしてうまくいくのかわかっているプログラマーがいません。あくまで将棋プラグラム業界では、という話ですが。

<中略>

近代科学は対象を分解して、理由を解明していくことで世界を解き明かしてきました。しかし、近年の情報科学は人間の解釈性が著しく悪いアルゴリズムが時代の先端を走り始めています。要素を分解していっても、そこに本質を発見できていないのです。人間にはある程度以上の複雑な挙動がわからないのです。

このように、答えや本質的にうまくいっている理由はわからないけど、うまくいっているということだけはわかるということがこれからは多くなってくるでしょう。

自分の理解を上回ってしまったときに、それをコントロールすることができないため選択しないという人もいるでしょうし、理由はわからないけどうまくいっているのだからやってみようという人もいるでしょう。

電王・Ponanza開発者が語る、“自転車置き場の議論”に陥った指し手生成祭り

(2016/11/29、ASCII.jp)

人間は難しい問題に直面してしまった時、簡単な切り口を探しがちです。それ自体はまったく間違った行為ではないのですが、いつまでも簡単な切り口を求め続けることは必ずしも正しい判断ではないでしょう。人間はわからない状態をわからないままにしておくことにもストレスを感じ、わからないところに無理やり理由をつけようと考えるのが常です。

難しい問題の時には議論が起こらないのに、自分の理解ができる問題の時には議論が白熱するようなことを「パーキンソンの凡俗法則」や「自転車置き場の議論」という呼び方をするそうですが、これからは、「わからない」「理解できない」ことに対して、安易に答えを出すことなく、あきらめずにわからないままの状態で真正面から向き合い続ける姿勢が重要になってくるのではないでしょうか。

まずは理解できない自分を認め、それでもそれに向き合い続けることが、現代科学を理解して紐解く鍵となるでしょう。理解できると傲慢になるのではなく、理解できないと空虚に走るでもなく、ただ見えないものを見ようとし続けることこそが、唯一この先を見る方法になると私は信じています。

わからないまま向き合い続けるというのはストレスがかかることかもしれませんが、これから先の未来では必要な資質となるのではないでしょうか。

「AlphaGo Zero」は、過去の打ち手のデータで強化学習をするのではなく、囲碁の基本ルールだけを教えて、対局を繰り返す(3日間で500万回の対戦)ことで上達し、トップ棋士を破ってきた「AlphaGo」に対して、100勝0敗という結果を出したそうです。

人工知能はどのようにして 「名人」を超えたのか?―――最強の将棋AIポナンザの開発者が教える機械学習・深層学習・強化学習の本質

新品価格
¥1,620から
(2017/10/27 15:32時点)

■まとめ

病院の診断支援システムにAIが導入されたとして、「因果関係はわからないけど、あなたはこういう病気の可能性が高い」といわれたときに、医師や患者はどう判断するのでしょうか。

どんなに医療にAIを活用しようとしても、医師や治療を受ける患者がその判断に疑いを持てば、利用することはできません。

つまり、AIに対する信用度を高めていく必要があるわけです。

今後は、「因果関係はわからないけど、こうである可能性が高い」ということが増えていくことが予想されますが、心理的障壁などを一つ一つクリアしていくことが医療とAIの未来にとっては重要になってくるのではないでしょうか。







【日立 関連記事】
続きを読む 機械学習を活用した電子カルテデータの解析により、糖尿病治療薬の効果を予測・比較する技術を開発|日立製作所

AIを活用した画像認識による皮膚疾患診断サポートシステムの実用化を目指し共同研究を開始|京セラコミュニケーションシステム・筑波大学




■AIを活用した画像認識による皮膚疾患診断サポートシステムの実用化を目指し共同研究を開始|京セラコミュニケーションシステム・筑波大学

参考画像:京セラコミュニケーションシステムと筑波大学が、AI を活用した画像認識による皮膚疾患診断サポートシステムの実用化を目指し共同研究を開始(2017/7/26、筑波大学)

京セラコミュニケーションシステムと筑波大学が、AI を活用した画像認識による皮膚疾患診断サポートシステムの実用化を目指し共同研究を開始

(2017/7/26、筑波大学)

本研究では、皮膚病の臨床画像をディープラーニングで学習し、メラノーマ(悪性黒色腫)などの皮膚がんをはじめとする複数の皮膚腫瘍を判別する「高精度な画像認識モデル」を開発します。次の段階として皮膚がん以外の皮膚病に適用範囲を拡大し、臨床画像から皮膚病全般の診断をサポートするシステムを開発します。

京セラコミュニケーションシステム(KCCS)と筑波大学はAI(人工知能)を活用した画像認識による医師向けの業界標準となる皮膚疾患診断サポートシステムの実用化を目指し共同研究を開始しました。

KCCSは画像認識モデル作成サービス「Labellio」の提供や画像認識システムの構築で培ったノウハウを活かし、システム開発を行ない、筑波大学は、、AIの機械学習に用いるデータのために蓄積した2万枚を超える膨大な臨床画像データの提供、皮膚疾患診断サポートシステムの精度評価、医療現場における適応性の評価を行ないます。

皮膚科専門医の診断支援だけでなく、専門医のいない遠隔地での診断サポートシステムの構築にも役立つことが期待されます。

【参考リンク】

■Facebook CEOも注目している皮膚がんを発見できるアプリがある!?

●「DermaCompare(ダーマコンペア)」

マーク・ザッカーバーグが注目しているのは医療用AI搭載アプリ!?によれば、スマホで撮影した写真とAIアルゴリズムによって、皮膚がんを発見することができるアプリをFacebook CEOのマーク・ザッカーバーグが注目しているそうです。

イスラエルのエメラルド・メディカル・アプリケーションが提供している「DermaCompare(ダーマコンペア)」は皮膚がん診断用として使用されているAIを搭載したアプリです。

ユーザーが画像をアップすると、過去画像やデータベース画像(黒色腫の画像データ約5,000万件)と比較し、提携している医師に診断を仰ぐというものです。

●SKIN SCAN

また、肌の写真から皮膚がんの可能性を判断するIPHONEアプリSKIN SCANによれば、皮膚のシミの写真を撮り、特殊なアルゴリズムを使って、人間の皮膚にあるフラクタル状の形を探すことで、皮膚がんの可能性を判断するアプリもあるそうです。

●Googleのイメージ認識アルゴリズム「Google Inception」を活用した皮膚がん判定ソフトウェア

Deep learning algorithm does as well as dermatologists in identifying skin cancer

(2017/1/27、スタンフォード大学)

The algorithm’s performance was measured through the creation of a sensitivity-specificity curve, where sensitivity represented its ability to correctly identify malignant lesions and specificity represented its ability to correctly identify benign lesions.It was assessed through three key diagnostic tasks: keratinocyte carcinoma classification, melanoma classification, and melanoma classification when viewed using dermoscopy.In all three tasks, the algorithm matched the performance of the dermatologists with the area under the sensitivity-specificity curve amounting to at least 91 percent of the total area of the graph.

スタンフォード人工知能研究所「Stanford Artificial Intelligence Laboratory」で行われNatureに掲載された結果によれば、convolutional neural networks (CNNs、イメージを判定するアルゴリズム) を使ったAIによる皮膚がん診断は、21人の皮膚科医の診断とほぼ同等の診断をすることができたそうです。

【参考リンク】




■まとめ

デジカメ技術と機械学習で皮膚がん診断支援システム開発|カシオによれば、カシオは、2016年4月からは、信州大学と共同で、深層学習(ディープラーニング)アルゴリズムをベースに、多数の症例画像を読み込み、機械学習を行うことで高い精度を実現する皮膚疾患のコンピュータ診断支援システムの技術開発を開始しているというニュースを以前お伝えしましたが、皮膚がん診断支援とディープラーニングの組み合わせが現在のトレンドのように感じます。

緑内障のリスク要因を4つの類型に自動で分類する手法を開発|東北大・トプコンによれば、緑内障の治療のケースにおいても、視神経の変形を肉眼で判定し、分類作業を行なう上で、医師の経験や主観的な要素が大きいため、分類が難しいことが問題となっていましたが、分類作業が自動化したことにより、経験の浅い医師でもできるようになり、また、標準化することによって、適切な治療を選択できるようになることが期待されています。

病気の診断を助けるツールや医師のスキルの向上を助けるツールが開発されることは大変良いことですよね。

京セラと筑波大学が開発している皮膚の病気の診断支援システムによって、皮膚癌から救われる患者さんが増えることが期待されます。







【関連記事】
続きを読む AIを活用した画像認識による皮膚疾患診断サポートシステムの実用化を目指し共同研究を開始|京セラコミュニケーションシステム・筑波大学

「健康になりたければ病院を減らせ」の因果関係について考えてみた|#AIに聞いてみた|#NHKスペシャル




【目次】

■AIに聞いてみた どうすんのよ!?ニッポン

ARTIFICIAL INTELLIGENCE FROM GOOGLE: THE FUTURE TECHNOLOGIES

by Strelka Institute for Media, Architecture and Design(画像:Creative Commons)

2017年7月22日放送のNHKスペシャル『AIに聞いてみた どうすんのよ!?ニッポン』では、公的な統計データや民間のデータ、大学や研究機関の調査など700万を超えるデータを「パターン認識」や「機械学習」という手法を用いて、社会に関する5000種類の情報の「つながり」や「近さ」をネットワークとして描き出した図を作成したそうです。

AIに聞いてみた どうすんのよ!?ニッポン|NHK

学習させたのは、経済産業省や総務省などの公的な統計データから、ハンバーガー店やラーメン店の数といった民間のデータ、さらには20代から80代までの個人を10年以上追跡している大学や研究機関の調査など700万を超えるデータです。
番組で紹介する”社会構造のネットワーク”は、膨大なデータの中から特徴を見つけ出すことができる「パターン認識」や「機械学習」という手法を用い、さらに、WikipediaやNHKのニュース原稿など、100万本を超える記事を「ディープラーニング」によって学習させることで、社会に関する5000もの情報の「近さ」や「つながり」を描き出した図です。数値的な振る舞いがただ「似ている」だけなく、現実世界で私たちが共に語る”近しい関係”といった概念もネットワークには色濃く反映されています。そのため、明らかに相関のないものがつながることもあります。

ここでまず行われる議論の一つとして、「AIに聞いてみた」とあるが「人工知能(AI)の定義とは何か?」がわかっていないため、本当にAIに聞いてみたことになるのか、単なるビッグデータでは?という意見です。

人工知能の定義について調べてみると、総務省によれば、『知性』や『知能』自体の定義がないことから、人工知能を定義することは難しいそうです。

【参考リンク】

最初の時点で言葉の定義がはっきりしていないことにより、計算能力が高いものをAIと呼んでしまっていることも多く、そのため、AIとAIもどきの区別がつかないと思って、AIもどきの製品が商品化されている状況にあるくらいなのだそうです。

AIもどきではなく本当のAIを作るために重要なことは、1.世界に共通した人工知能(AI)の定義を作ること、2.学習用データ(現実世界の情報)を持っていることをを示すこと、だと思います。

今回NHKが開発した「社会問題解決型AI」は、公的な統計データ、民間のデータ、大学や研究機関の調査など700万を超えるデータが入っているということでしたので、加工されていないリアルな世界の一次情報ではないものの、一般の研究者ができる範囲を超えたデータ量・種類であると感じます。

AIが学習したデータ|「NHKスペシャル『AIに聞いてみた どうすんのよ!?ニッポン』」
AIが学習したデータ|「NHKスペシャル『AIに聞いてみた どうすんのよ!?ニッポン』」

参考画像:AIが学習したデータ|「NHKスペシャル『AIに聞いてみた どうすんのよ!?ニッポン』」|NHKスクリーンショット

Twitterのハッシュタグ「#AIに聞いてみた」を見てみると、相関関係と因果関係が混同しているという意見が目立ちました。

データとデータを糸でつなぎ、ある一点をつまむと、全く関係のないと思っていた項目が引きずられて出てきたというのが今回の番組の印象だったのですが、相関関係と因果関係が混同しているという意見が出てきたのは、学習用データの質・量に問題があるのか、開発したAI・製作者側に問題があるのか、どういうものであれば相関関係と因果関係が混同していないものができたのか、についてはわかりません。

ただ、そうしたもの全部含めて、いったん棚上げして(専門家に任せるしかわからない)、番組で出てきた提言について考えてみました。




■健康になりたければ病院を減らせ

前置きが長くなりましたが、「健康になりたければ病院を減らせ」という提言について考えてみたいと思います。

健康になりたければ病院を減らせ|NHKスペシャル
健康になりたければ病院を減らせ|NHKスペシャル

参考画像:健康になりたければ病院を減らせ|NHKスペシャル|スクリーンショット

病院の数が多い(医師の数が多い)というのは安心材料の一つでもあり、病院に近いところを選ぶというのは不動産選びの材料の一つになっているものだと思っていました。

しかし、今回NHKが開発したAIは、「健康になりたければ病院を減らせ」という提言をしています。

その理由について想像してみました。

※ここからの意見は番組内容をまとめたものではなく、「健康になりたければ病院を減らせ」という提言について、こういう因果関係があるのではないかと勝手に想像したものですので、ご了承ください。

※因果関係がないといわれているものに勝手に因果関係をつけて考えるとどうなるかという実験ともいえるかもしれません。

●病院の数が減ることで優秀な医師が残るようになるから

年齢が若い医師のほうが患者の死亡率が低い!|年長の医師のほうが経験年数の少ない医師に比べて医学的知識が少なく、ガイドラインに合わせた治療を行わない!?で紹介したBMJ(英国医師会雑誌)に掲載された研究によれば、年齢が若い医師のほうが患者の死亡率が低いということが分かったそうです。

「超一流になるのは才能か努力か?」(著:アンダース・エリクソン)

超一流になるのは才能か努力か?

新品価格
¥1,998から
(2017/5/19 15:50時点)

医者と、遊びでテニスをしている人たちとのこうした類似点を指摘したのは2005年にハーバードメディカルスクールの研究チームが発表した論考だ。彼らは医師が提供する治療の質が時間とともにどのように変化するかに関する研究を幅広く調べている。医者としての活動年数が長いほど能力が高まるのであれば治療の質も経験が豊富になるほど高まるはずである。しかし結果まさにその逆だった。論考の対象となった60あまりの研究のほぼ全てにおいて医師の技能は時間とともに劣化するか良くても同じレベルにとどまっていた。年長の医師のほうがはるかに経験年数の少ない医師と比べて知識も乏しく適切な治療の提供能力も低く研究チームは年長の医師の患者はこのために不利益を被っている可能性が高いと結論づけている。p184

簡単にまとめると、長年経験を積んだ医師のほうが知識も技能が蓄積されていると期待している人が多いと思いますが、60ほどの研究によれば、医師の技能は時間とともに劣化してしまうものであり、また年長の医師のほうが経験年数の少ない医師に比べて医学的知識が少なく、ガイドラインに合わせた治療を行わない傾向になるため、年長の医師の患者は質の低い医療を受けている可能性があるというものです。

「超一流になるのは才能か努力か?」(著:アンダース・エリクソン)

特に複雑な症例の診断を下す医師は患者の状態について膨大な情報集めそれを吸収し適切な医学知識と結びつけて結論を導き出さなければならない。その過程では少なくとも3つの異なる作業が必要になる。それは患者についての情報を集めること、関連する医学知識を思い出すこと、そして情報と医学知識を総合して「おそらくこれだろう」と思われる症例を絞り込み想定される診断を特定して適切なものを選ぶことである。p108

病気を診断するにあたって、患者のデータと医学知識を組み合わせて適切なものを選択する必要がありますが、医師は、常に新しい知識をアップデートしていかなければ、患者にとって質の低い治療を行なってしまう恐れがあるのです。

C型肝炎の治療薬は劇的に進歩し、今では90%近くの患者が治る!によれば、C型肝炎治療薬は劇的に進歩し、今では90%近くの患者が治るようになっているそうですが、その一方で、10年20年以上前の知識を持った医師たちによって、治療が勧められないというケースもあるそうです。

病院の数を減らすということは、優秀な医師が残りやすくなるということによって、健康になるということは考えられないでしょうか?

●病院の数が減る=病院が集約されることにより、システム投資が進む

また、病院数が減るというとネガティブなイメージがありますが、病院が集約されると考えると、システムに投資ができるとも考えられます。

病院のネットワークシステムを改善することによる医療者と患者のメリットとは?|群馬大病院とNECネッツエスアイのケースによれば、従来とのシステムと比べて高速化したことにより、患者・医療者にとっての負担軽減につながり、また、データの確認がすぐにできることにより安全性もアップすることが期待されるそうです。

また、患者と医療者がコミュニケーションをとる時間も多く取れるようになるとも考えられます。

女性医師の治療を受けた患者は生存率が高い!?|医師の患者に対する共感・コミュニケーションが重要な役割を果たしている?によれば、医療における医師と患者のコミュニケーションの重要性は高まっています。

コミュニケーションの重要性が高まっているのには以下のような理由があります。

  • 主たる病気が生活習慣病へ移行したことで、ケア(care)やマネジメント(management)が大きな位置を占めるようになった
  • 患者が医療情報に触れる機会が増えたが、その情報に混乱している患者も増加
  • 医学の進歩により市民の一部は医学を万能と考えるようになり、医療への過度の期待を生んでいる

患者に対して適切な医療を行うためには、医師が患者の言葉に耳を傾け(傾聴)、気持ちを受け入れ(受容)、そのうえで医師として適切な情報を患者にわかりやすい言葉で伝えることが重要になります。

また、患者が持っている間違った医学的知識を訂正することは重要ですが、そのやり方が重要だということですよね。

まずは、患者がどのような悩み・苦労を抱えているのか、患者の声に耳を傾け、それを受け入れることによって、医師と患者間での信頼関係が生まれ、その後のケアやマネジメントが良好になると考えられます。

しかし、従来のシステムではそうした患者とのコミュニケーションにかけられる時間が少なくなってしまったり、コミュニケーションにかける時間を増やそうとすると、労働時間が増えることにより、医療者の心身の負担が増加してしまっていたのではないでしょうか。

そこで、病院が集約され、ネットワークシステムに投資することができれば、患者と医療者のコミュニケーションが増え、より良いケアができるようになることになり、健康になると考えられるのではないでしょうか?

【関連記事】

●病院の数が減ることにより、予防医療に重点がおかれるようになる

国民皆保険による医療、医師の半数「持続不能」|「#健康格差」を広げないために私たちができることで取り上げた日本経済新聞社などが実施したアンケート調査によれば、医師の半数が高齢化や医療技術の進歩で治療費が高額になっていることにより国民皆保険による医療が「持続不能」と答えているそうです。

病院数が減ることを前提に考えると、できるだけ病気にならないようにすることが重視され、予防医療・予防医学・予測医療が進められていくのではないでしょうか?

がん検診といった予防医療・予防医学に取り組んでいくことは医療費の削減するためにも今後重要になっていくと考えられますし、また、QOL(生活の質)の向上といった間接的なコスト削減も期待できると考えられます。

積極的に計画・実行する人はがん・脳卒中・心筋梗塞の死亡リスクが低い|国立がん研究センターで紹介した国立がん研究センターによれば、日常的な出来事に対して、積極的に解決するための計画を立て、実行する「対処型」の行動をとる人は、そうでない人に比べて、がんで死亡するリスクが15%低く、また、脳卒中リスクが15%低く、脳卒中心筋梗塞などで死亡するリスクが26%低いという結果が出たそうです。

その理由としては、日常的な出来事に対して、積極的に解決するための計画を立て、実行する「対処型」の人は、がん検診や健康診断を受診するため、病気の早期発見につながり、病気による死亡リスクが低下して可能性があるようです。

つまり、定期検診などの予防医学・予防医療を導入するということは、病気による死亡リスクが減少し、医療費の削減にもつながるということです。

今後は、医療とテクノロジーを組み合わせて、深刻な病気になる一歩前の段階、未病の段階で治療を行なっていくかがカギになっていくと思います。

今回のテーマと併せて考えると、病院の数を減らすと、病気にならないように予防医療への関心が高まり、病気になる一歩前の段階の未病の段階で治療が行われるようになって、病気による死亡リスクが低下し、健康になると考えられないでしょうか?

■まとめ

今回の提言は因果関係がわからないというのがポイントで、これからの時代はこうした形になっていくような予感もあります。

つまり、コンピュータが出した答えに対して、人間が後付けで理論や因果関係を考えていくという形です。

天才プログラマーが予測する「AIが導く未来」 人間の「なんとなく」は合理的に判断される

(2017/8/24、東洋経済オンライン)

言い方を変えると、今までのコンピュータによる最適化の能力では、答えは基本的に1つしかない。それがディープラーニングだと、答えがそもそもないのです。「確たる答えはないけど、なんとなくこう」っていうのがディープラーニングです。

電王・Ponanza開発者が語る、理由がわからないけどスゴイ“怠惰な並列化”

(2016/10/26、ASCII.jp)

体感で言えば、LazySMPは実はプログラマーには人気がない手法です。なぜかと言えば、前述のように結局のところどうしてうまくいくのか、その正確なところがプログラマーにはわからないからです。ディープラーニングも本質的にどうしてうまくいくのかわかっているプログラマーがいません。あくまで将棋プラグラム業界では、という話ですが。

<中略>

近代科学は対象を分解して、理由を解明していくことで世界を解き明かしてきました。しかし、近年の情報科学は人間の解釈性が著しく悪いアルゴリズムが時代の先端を走り始めています。要素を分解していっても、そこに本質を発見できていないのです。人間にはある程度以上の複雑な挙動がわからないのです。

このように、答えや本質的にうまくいっている理由はわからないけど、うまくいっているということだけはわかるということがこれからは多くなってくるでしょう。

自分の理解を上回ってしまったときに、それをコントロールすることができないため選択しないという人もいるでしょうし、理由はわからないけどうまくいっているのだからやってみようという人もいるでしょう。

電王・Ponanza開発者が語る、“自転車置き場の議論”に陥った指し手生成祭り

(2016/11/29、ASCII.jp)

人間は難しい問題に直面してしまった時、簡単な切り口を探しがちです。それ自体はまったく間違った行為ではないのですが、いつまでも簡単な切り口を求め続けることは必ずしも正しい判断ではないでしょう。人間はわからない状態をわからないままにしておくことにもストレスを感じ、わからないところに無理やり理由をつけようと考えるのが常です。

難しい問題の時には議論が起こらないのに、自分の理解ができる問題の時には議論が白熱するようなことを「パーキンソンの凡俗法則」や「自転車置き場の議論」という呼び方をするそうですが、これからは、「わからない」「理解できない」ことに対して、安易に答えを出すことなく、あきらめずにわからないままの状態で真正面から向き合い続ける姿勢が重要になってくるのではないでしょうか。

まずは理解できない自分を認め、それでもそれに向き合い続けることが、現代科学を理解して紐解く鍵となるでしょう。理解できると傲慢になるのではなく、理解できないと空虚に走るでもなく、ただ見えないものを見ようとし続けることこそが、唯一この先を見る方法になると私は信じています。

わからないまま向き合い続けるというのはストレスがかかることかもしれませんが、これから先の未来では必要な資質となるのではないでしょうか。

「AlphaGo Zero」は、過去の打ち手のデータで強化学習をするのではなく、囲碁の基本ルールだけを教えて、対局を繰り返す(3日間で500万回の対戦)ことで上達し、トップ棋士を破ってきた「AlphaGo」に対して、100勝0敗という結果を出したそうです。

人工知能はどのようにして 「名人」を超えたのか?―――最強の将棋AIポナンザの開発者が教える機械学習・深層学習・強化学習の本質

新品価格
¥1,620から
(2017/10/27 15:32時点)

P.S.

Twitterのハッシュタグ「#AIに聞いてみた」を見てみると、みなさんさまざまな感想を持っているようです。

ただ、例えば、病院の診断支援システムにAIが導入されたとして、「因果関係はわからないけど、あなたはこういう病気の可能性が高い」といわれたときに、医師や患者はどう判断するのでしょうか。

どんなに医療にAIを活用しようとしても、医師や治療を受ける患者がその判断に疑いを持てば、利用することはできません。

つまり、AIに対する信用度を高めていく必要があるわけです。

そういう意味でも、今回の「AIに聞いてみた」という番組には価値があったのではないでしょうか?







【関連記事】
続きを読む 「健康になりたければ病院を減らせ」の因果関係について考えてみた|#AIに聞いてみた|#NHKスペシャル

Deepmind、アメリカ退役軍人省(VA)との提携|約70万人分のデータをディープラーニング用学習データとして活用し、急性腎障害(AKI)のアルゴリズムの改善・開発を目指す

> 健康・美容チェック > 腎臓 > 腎臓の病気 > Deepmind、アメリカ退役軍人省(VA)との提携|約70万人分のデータをディープラーニング用学習データとして活用し、急性腎障害(AKI)のアルゴリズムの改善・開発を目指す

【目次】




■Deepmind、アメリカ退役軍人省(VA)との提携|約70万人分のデータをディープラーニング用学習データとして活用し、急性腎障害(AKI)のアルゴリズムの改善・開発を目指す

Researching patient deterioration with the US Department of Veterans Affairs
Researching patient deterioration with the US Department of Veterans Affairs

参考画像:Researching patient deterioration with the US Department of Veterans Affairs(2018/2/22、Deepmind)

Researching patient deterioration with the US Department of Veterans Affairs

(2018/2/22、Deepmind)

Studies estimate that 11% of all in-hospital deaths are due to patient deterioration not being recognised early enough or acted on in the right way.

Deepmindのプレスリリースによれば、Deepmindはアメリカ退役軍人省(VA)との医療研究パートナーシップを結んだそうです。

ある研究によれば、病院内での死亡の11%は早期に発見しているか、適切な処置を行なっていれば避けられるものであったそうで、今回の提携で手に入れた約70万人分の退役軍人の匿名化した診療記録をディープラーニング用学習データとして活用することにより、患者の悪化の危険因子の特定や発症を正確に予測できるかどうかの判断をするための分析を行うそうです。

We’re focusing on Acute Kidney Injury (AKI), one of the most common conditions associated with patient deterioration, and an area where DeepMind and the VA both have expertise. This is a complex challenge, because predicting AKI is far from easy. Not only is the onset of AKI sudden and often asymptomatic, but the risk factors associated with it are commonplace throughout hospitals. AKI can also strike people of any age, and frequently occurs following routine procedures and operations like a hip replacement.

Our goal is to find ways to improve the algorithms currently used to detect AKI and allow doctors and nurses to intervene sooner.

Deepmindの目標は、現在予測することが難しい急性腎障害(AKI)のアルゴリズムを改善し、医療関係者が早期発見できるようにすることなのだそうです。

【関連記事】




■まとめ

腎臓の機能には、老廃物のろ過と排出、血圧の調節、ホルモンの分泌という機能があるだけでなく、腎臓は『心腎連関』『脳腎連関』『肺腎連関』『肝腎連関』など臓器同士が連携するネットワークの要|#NHKスペシャルで紹介した京都大学大学院医学研究科の柳田素子教授によれば、腎臓は『心腎連関』『脳腎連関』『肺腎連関』『肝腎連関』など臓器同士が連携するネットワークの要となっているそうです。

アメリカ腎臓学会の調査チームによる分析によれば、入院患者のうち5人に1人が急性腎障害(AKI)を発症していたそうです。

人工透析技術の進歩によって、腎臓が悪化したという直接的な原因が死因になることは少ないのですが、腎臓は様々な臓器と関係があり、最近では、急性腎障害(AKI)になると、さまざまな臓器に炎症が出たり、障害が出ることがわかってきているそうで、それが多臓器不全につながっていたり、多臓器不全から急性腎障害(AKI)が起きるということがあるそうです。

危険因子を特定でき、急性腎障害を早期発見することができればその他の病気を防ぐことにもつながるのではないでしょうか?







【腎臓の病気 関連記事】
続きを読む Deepmind、アメリカ退役軍人省(VA)との提携|約70万人分のデータをディープラーニング用学習データとして活用し、急性腎障害(AKI)のアルゴリズムの改善・開発を目指す