「深層学習」タグアーカイブ

ディープラーニング×医療|deep learningでがんを見つける?|がん検診を人工知能が行なう時代になる!?




【目次】

■がん検診を人工知能が行なう時代になる!?

Enlitic
Enlitic

参考画像:The wonderful and terrifying implications of computers that can learn | Jeremy Howard | TEDxBrussels|YouTubeスクリーンショット

がん検診は人工知能で!Deep Learningが悪性腫瘍を見逃さない

(2015/8/5、ITpro)

人工知能をがん検診に応用することで、悪性腫瘍を高精度で見つけ出す技術の開発が進んでいる。メディカルイメージをDeep Learningの手法で解析すると、熟練した医師より正確にがん組織などの病変を見つけ出す。

人工知能をがん検診に活用する技術の開発が進んでいるそうです。

■ディープ・ラーニングでがんを見つける?

サンフランシスコに拠点を置くベンチャー企業Enliticは、Deep Learningを医療データに応用したシステムを開発している。イメージデータをDeep Learningの手法で解析し、病気を判定する(上の写真)。イメージデータにはレントゲン写真、MRI、CTスキャン、顕微鏡写真などが使われる。検査結果に悪性腫瘍などがあるかどうかを高速にかつ正確に判定する。

今回紹介したEnliticのシステムは、おそらくディープ・ラーニングの手法で組織構造の特徴を学習させ、被験者の組織画像から悪性腫瘍があるかどうかを組織構造の特性から探し出すものだと思われます。

The wonderful and terrifying implications of computers that can learn | Jeremy Howard | TEDxBrussels




■ディープ・ラーニングとは?

ディープラーニングとはそもそも何なのでしょうか?

「コンテンツの秘密」(著:川上量生)では、ディープラーニングのことをこのように説明しています。

ディープ・ラーニングとは、簡単に説明すると、なにかを学習するときに、いちどに全部を学習するのではなく、基礎から応用へと何段階かに分けて学習するような学習方法のことです。

ディープ・ラーニングとは、多くの段階に分けて学習を行うことのようですが、具体的にはよくわかりません。

天才プログラマーが予測する「AIが導く未来」 人間の「なんとなく」は合理的に判断される

(2017/8/24、東洋経済オンライン)

言い方を変えると、今までのコンピュータによる最適化の能力では、答えは基本的に1つしかない。それがディープラーニングだと、答えがそもそもないのです。「確たる答えはないけど、なんとなくこう」っていうのがディープラーニングです。

人工知能の動向(2016/3/17、NRI)では、機械学習とディープラーニングの違いについて次のように紹介しています。

従来の機械学習とディープラーニングの違い
従来の機械学習とディープラーニングの違い

参考画像:人工知能の動向(2016/3/17、NRI)

従来の機械学習とは、人間が特徴を定義するため、複雑な特徴を表現できないという弱点があります。

ディープラーニング(深層学習)とは、機械学習の手法の一つで、人工知能が学習データから特徴を抽出、つまり、AI自身がデータからルールと知識を獲得していく方法です。

Machine Learning and Human Bias|YouTube

機械学習において重要なことは、多くの学習データを用意することなのですが、例えば、Googleは、機械学習用データを集めるために、落書きをしてもらうサービスを提供しています。

【参考リンク】

ビッグデータとは何か|平成24年版情報通信白書|総務省によれば、ICT(情報通信技術)の進展により、多種多量なデータ(ビッグデータ)を生成・収集・蓄積することが可能になったのですが、このことも機械学習が注目されるようになった背景としてあります。

ディープラーニングは「音声認識」「画像認識」「言語処理」などで用いられていて、画像認識に関しては、例えばECサイトでの商品画像による商品検索に活用されているそうです。

AI活用事例|ディープラーニングの商品検索への応用
AI活用事例|ディープラーニングの商品検索への応用

参考画像:人工知能の動向(2016/3/17、NRI)

Enliticの場合は、レントゲン写真、MRI、CTスキャン、顕微鏡写真などの画像データをディープラーニングで学習させ病気を判定することに活用していると考えられます。

→ AI(人工知能)と機械学習(マシンラーニング)と深層学習(ディープラーニング)の違いとは? について詳しくはこちら

■IBMのWatsonとの違いは?

IBM Watsonは、人工知能を医療分野に応用し成果を上げているが、Enliticのアプローチとは大きく異なる。Watsonは、Cognitive Computingと呼ばれ、大量のデータから意味を引き出すことを目的とする。医学論文や臨床試験結果など、大量のドキュメントを読み込み、そこから治療に関する知見を得る。医師が治療方針を決定する際に利用する(上の写真)。

一方、Enliticは、Deep Learningの手法でメディカルイメージを解析し症状を判定する。イメージ解析ツールとして位置づけられ、医師の視覚として活躍している。さらにDeep Learningの特性とし、高速で学習する能力を備えている。つまりEnliticは、短時間で熟練医師を超える能力を獲得する。両者共に人工知能を医療分野に適用しているが、そのアーキテクチャーは大きく異なる。

IBMの「WATSON」によってがん治療がスピードアップする!?によれば、Watsonは膨大な量の医療データや論文などのデータベースが格納されており、患者のデータを高速で解析し、医療データを照らし合わせることで、患者に最も最適と思われる治療方針を提案することで、医師や患者が意思決定の支援をするシステムです。

同じ人工知能を活用するシステムといっても、がん治療に対するアプローチは全く違っています。

しかし、人工知能「Watson」に医療画像解析を追加|IBM、Merge Healthcareを10億ドルで買収によれば、IBMは、医療用画像解析技術をMerge Healthcareを買収することで、Watsonに医療画像分析の機能を追加しようとしていると思われるので、その違いは小さくなるかもしれません。

■まとめ

今後は、人工知能を医療に活用されるようになり、IBMのWatsonとEnliticのような画像診断を組み合わせたものもできてくるでしょう。

大事なことは、より多くの患者のデータを得て、より精度の高いシステムを作り上げることです。

そのためには、病院同士が連携して、データを共有していくことが大事になっていくのではないでしょうか。







【関連記事】
続きを読む ディープラーニング×医療|deep learningでがんを見つける?|がん検診を人工知能が行なう時代になる!?

AI(人工知能)と機械学習(マシンラーニング)と深層学習(ディープラーニング)の違いとは?




■AIと機械学習(マシンラーニング)と深層学習(ディープラーニング)の関係

機械学習(マシンラーニング)と深層学習(ディープラーニング)の関係
機械学習(マシンラーニング)と深層学習(ディープラーニング)の関係

参考画像:Introduction to Deep Learning: Machine Learning vs Deep Learning|YouTubeスクリーンショット

人工知能、機械学習、ディープラーニングの違いとは

(2016/8/9、NVIDIA)

その関係を考えるとき、同心円で表すのが一番簡単でしょう。まず、最初に生まれたアイデアが「AI」です。これは、もっとも包括的な概念です。次に、「機械学習」が発展し、最後に「ディープラーニング」が登場しました。今日のAIの急速な成長を促すディープラーニングは、AIと機械学習に含まれています。

NVIDIAの説明では、AIという概念の中に「機械学習(マシンラーニング)」があり、深層学習(ディープラーニング)は、AIと機械学習に含まれています。

Machine Learning and Human Bias|YouTube

機械学習において重要なことは、多くの学習データを用意することなのですが、例えば、Googleは、機械学習用データを集めるために、落書きをしてもらうサービスを提供しています。

ビッグデータとは何か|平成24年版情報通信白書|総務省によれば、ICT(情報通信技術)の進展により、多種多量なデータ(ビッグデータ)を生成・収集・蓄積することが可能になったのですが、このことも機械学習が注目されるようになった背景としてあります。

AIの成長の理由は、速く、安く、強力な並列処理を実現できるGPUの普及と膨大なデータ(ビッグデータ)という2つの要素が登場したことが関係しており、また、ディープラーニング(深層学習)と呼ばれる人工知能の学習手法が考えられたことによって、AI自身がデータから学習するようになったことから、AIが様々な分野に活用されるようになったと考えられます。

次に、機械学習(マシンラーニング)と深層学習(ディープラーニング)の違いについてみていきましょう。




■機械学習(マシンラーニング)と深層学習(ディープラーニング)の違い

Introduction to Deep Learning: Machine Learning vs Deep Learning

機械学習(マシンラーニング)と深層学習(ディープラーニング)ともに、学習データを分類することに使われる技術ですが、違う点は人間が特徴を定義するか、コンピュータが特徴を抽出し、ルールを決めていくかの違いがあります。

人工知能の動向(2016/3/17、NRI)では、機械学習とディープラーニングの違いについて次のように紹介しています。

従来の機械学習とディープラーニングの違い
従来の機械学習とディープラーニングの違い

参考画像:人工知能の動向(2016/3/17、NRI)

従来の機械学習とは、人間が特徴を定義するため、複雑な特徴を表現できないという弱点があります。

ディープラーニング(深層学習)とは、機械学習の手法の一つで、人工知能が学習データから特徴を抽出、つまり、AI自身がデータからルールと知識を獲得していく方法です。

ディープラーニングは「音声認識」「画像認識」「言語処理」などで用いられていて、画像認識に関しては、例えばECサイトでの商品画像による商品検索に活用されているそうです。

AI活用事例|ディープラーニングの商品検索への応用
AI活用事例|ディープラーニングの商品検索への応用

参考画像:人工知能の動向(2016/3/17、NRI)

ディープラーニングを理解するうえで最も大事なのは、答えや本質的にうまくいっている理由はわからないけど、うまくいっているということだけはわかるという点です。

天才プログラマーが予測する「AIが導く未来」 人間の「なんとなく」は合理的に判断される

(2017/8/24、東洋経済オンライン)

言い方を変えると、今までのコンピュータによる最適化の能力では、答えは基本的に1つしかない。それがディープラーニングだと、答えがそもそもないのです。「確たる答えはないけど、なんとなくこう」っていうのがディープラーニングです。

電王・Ponanza開発者が語る、理由がわからないけどスゴイ“怠惰な並列化”

(2016/10/26、ASCII.jp)

体感で言えば、LazySMPは実はプログラマーには人気がない手法です。なぜかと言えば、前述のように結局のところどうしてうまくいくのか、その正確なところがプログラマーにはわからないからです。ディープラーニングも本質的にどうしてうまくいくのかわかっているプログラマーがいません。あくまで将棋プラグラム業界では、という話ですが。

そのため、これからの時代は、コンピュータが出した答えに対して、人間が後付けで理論や因果関係を考えていくことが増えるのではないかと考えられているのです。

電王・Ponanza開発者が語る、“自転車置き場の議論”に陥った指し手生成祭り

(2016/11/29、ASCII.jp)

人間は難しい問題に直面してしまった時、簡単な切り口を探しがちです。それ自体はまったく間違った行為ではないのですが、いつまでも簡単な切り口を求め続けることは必ずしも正しい判断ではないでしょう。人間はわからない状態をわからないままにしておくことにもストレスを感じ、わからないところに無理やり理由をつけようと考えるのが常です。

人工知能はどのようにして 「名人」を超えたのか?―――最強の将棋AIポナンザの開発者が教える機械学習・深層学習・強化学習の本質

新品価格
¥1,620から
(2018/1/11 14:55時点)

難しい問題の時には議論が起こらないのに、自分の理解ができる問題の時には議論が白熱するようなことを「パーキンソンの凡俗法則」や「自転車置き場の議論」という呼び方をするそうですが、これからは、「わからない」「理解できない」ことに対して、安易に答えを出すことなく、あきらめずにわからないままの状態で真正面から向き合い続ける姿勢が重要になってくるのではないでしょうか。

まずは理解できない自分を認め、それでもそれに向き合い続けることが、現代科学を理解して紐解く鍵となるでしょう。理解できると傲慢になるのではなく、理解できないと空虚に走るでもなく、ただ見えないものを見ようとし続けることこそが、唯一この先を見る方法になると私は信じています。

わからないまま向き合い続けるというのはストレスがかかることかもしれませんが、これから先の未来では必要な資質となるのではないでしょうか。

AI(人工知能)と機械学習(マシンラーニング)と深層学習(ディープラーニング)を知ったうえで、様々な企業が提供しているサービスがどのような特徴を持つのか、チェックしてみましょう!







【参考リンク】
続きを読む AI(人工知能)と機械学習(マシンラーニング)と深層学習(ディープラーニング)の違いとは?

深層学習を用いた高精度歩容認証技術によって、個人認証・個人識別が可能になり、未来科学捜査やゲートのない世界の実現の可能性がある|#大阪大学




■深層学習を用いた高精度歩容認証技術によって、個人認証・個人識別が可能になり、未来科学捜査やゲートのない世界の実現の可能性がある|#大阪大学

「未来科学捜査」歩容鑑定

(2017/11/7、大阪大学)

歩く向きの差が小さい場合、見た目が比較的近くなるため、画像同士の同じ位置での差を特徴として比較することが有効です。一方、歩く向きの差が大きい場合、見た目が大きく異なるため、手の振り方や脚の振り幅等の抽象的な特徴の差を比較することが有効です。

本開発技術では、独自の深層学習モデルを提案し、これらの特徴を適切に使い分けることで、歩く向きが異なる人物映像からの高精度な歩容認証を可能にしました。

大阪大学産業科学研究所の八木康史教授らの研究グループでは、深層学習を用いた高精度歩容認証技術を開発しました。

今回のポイントはこちら。

参考画像:歩く向きの違いに応じた深層学習モデル|「未来科学捜査」歩容鑑定(2017/11/7、大阪大学)|スクリーンショット

その結果、歩く向きが大きく異なる場合、従来技術では本人認証の誤り率が約40%であったのに対し、本開発技術では約4%(世界最高精度)まで低減できました。

これにより、今まで適用が困難であった歩く向きが異なる場合についても個人認証が可能になり、「未来科学捜査」歩容鑑定の適用範囲を大きく広げます。

歩く向きが異なる人物映像からの高精度(本人認証の誤り率約4%)な歩容認証ができるようになったことから、歩く向きが異なる場合においての個人認証が可能になり、カメラに映った複数の人物から特定の一人を探すといった個人識別が可能になったことから、「未来科学捜査」歩容鑑定の適用範囲を広げることができます。

■まとめ

歩く向きが異なる場合についても個人認証が可能になり、また、カメラに映った複数の人物から特定の一人を探すといった個人識別が可能になったことで「未来科学捜査」歩容鑑定や店舗・商業施設などでの同一人物の移動経路の解析に利用し、顧客に応じたサービス提供等のマーケティング応用も期待されるそうです。

つまり、現在起きているテロや犯罪などに対する安全対策だけでなく、個人認証と個人識別によって、ゲートが必要のない世界の実現にも活用ができるかもしれません。

世界から「重力、ゲート、繋ぎ目」はなくなる。メディアアーティスト落合陽一さん2

(2015/11/3、東大新聞オンライン)

2つ目、ゲートをなくすこと。

この世界にはゲートが多すぎる。大体が人の労働コストに縛られた改札構造だと思う。都市の特徴。

本当は電車から降りた瞬間に、改札なんかに集まらずに自由な方向に向かって行ったっていいわけじゃん?
なのになんで改札があるかというときっとホワイトカラー時代の名残で、誰かが観察して、警備して、管理する必要があったから。つまりそれって、マンパワーの労働力を基準にして人間の行動が束縛されてきた訳で。

でもそんな束縛はコンピュータ時代には不要だと思っていて、人間は自由な方に自由に行っていいはずだし、ゲートが一個もない地下鉄とか、レジがないコンビニとかがあってもいいよね。

こういった都市構造自体の再定義をデジタルネイチャー時代にどうやっていくかには、すごい興味がある。

「黒川紀章ノート」にこのように書かれています。

黒川紀章ノート―思索と創造の軌跡

中古価格
¥648から
(2017/3/30 17:23時点)

農業化社会は実は工業化社会に非常に近いということに気づいたのである。

両方共、人は、決まった時間に決まったことをやっていればいい。農業は、月が出たらどうするとか、何月にはこうすると、季節によってきちんとすべきことが決まっている。

それは、工業も同じだ。工場も、屋内の畑のようなもので手順がきちんと決められていて、それにしたがって作業が行われている。

だが、情報化社会は違う。ここでは決まったやり方というものはない。人々は、常に情報を集め、それによってアドホックに動く。

※アドホック:「特定の目的のための」という意味

現在存在する都市は、決まった時間に決まったことをやる、人々はそれを実行し、管理していくという農業化社会・工業化社会の考えに基づいて作られて都市が作られているのではないかということ。

情報化社会といわれて久しいですが、実際の私たちの都市は情報化社会に合わせた都市づくりにはなっていないのかもしれません。

情報化社会では、生きるために必要な情報をより早く仕入れ、それに基づいてすばやく動いていくという遊牧民(ノマド)のような人が生き残る社会です。

そういう人たちにとっては、「ゲート」というものは行動を制限してしまうかもしれません。

メタボリズムの方法論では、都市の遊びの空間について、こう展開している。

「高度に秩序化された都市は、同時に魚釣りを楽しみ、虫の音を聞き、スポーツを楽しむ都市でなくてはならない。高度に機能化されたオフィスや工場は同時に、自由な思索の場であり、遊びの場でなくてはならない。しかしこの両端を妥協的に調和させるのではなく、それを対立的に劇的に共生させることが都市の中にドラマティックな緊張感を作り出す」

(「黒川紀章ノート」より)

今は働く場所と生活する場所、遊ぶ場所は分かれています。

これは、ある種「ゲート」で管理されているともいえるのではないでしょうか。

新しい都市の発想から考えれば、新しい都市では、働きながら(働くということも将来はどうなるのかわかりませんが)、遊びながら、生活しながらということをひと続きに行なえるようになっていくでしょう。

■Amazon Go の例

アマゾンの「レジなしでの買い物」は実現間近!Amazon Goの仕組みをYouTube動画から考える|#Bloomberg

Introducing Amazon Go and the world’s most advanced shopping technology

■スマホアプリでチェックイン

●Amazonアカウント(クレカ情報や個人情報をあらかじめ登録)

●Beacon(店舗内でのユーザーの滞在証明)

PayPal、iBeacon、Hands Free、Origami Payもすでに利用

■棚から商品をとる

●カメラとセンサーで商品位置と顧客の動きを読み取る

●一度とったものを戻すというような動作もディープラーニングで学習

●リアルタイムでオンライン上の仮想ショッピングカートに加える

●電子タグ(RFID)は使わない

■レジを通らずに決済→Just walk out

●入り口付近のセンサーでアプリを認識し、顧客を識別

●データを転送してAmazonアカウントで決済

●#uber のように降りるときに支払う作業がいらない

【Amazon Goの先の未来】

●アプリを起動する必要もない

ライブや万引き防止用の顔認識システムや生体認証、歩く姿で個人がわかる「歩容認証」を活用する

http://www.jsps.go.jp/j-grantsinaid/22_letter/data/news_2014_vol2/p12.pdf

但し、それではBeaconが使えないので滞在証明を別の方法でする必要がある。

●「これからの世界をつくる仲間たちへ」(著:落合陽一)には、テラヘルツ電波と画像認識技術を組み合わせて一人ひとりをスキャニングして検札を済ませ「どこからでも出入りできるシステム」というアイデアがありました。

■「CUBIC」|”ゲートなしの改札機”というコンセプト

[vimeo]https://vimeo.com/236719488[/vimeo]

facial recognition to be your future ticket on the london underground

ロンドンの地下鉄が顔認証でチケットやカードいらずに?

(2017/10/6、Fashionsnap.com)

「CUBIC」がデザインしたそんな画期的なシステムは、現在ユーザーテスト中ではあるが、”ゲートなしの改札機”というコンセプトを掲げ、物理的な改札ゲートの代わりに、毎分およそ65〜75人が通ることができる長めのコースを設計。そこを通過すると顔がスキャンされ、支払いはスマートフォンに同期されるという時間と手間を省く効率的な仕組みになっている。

これからの社会のキーワードとして注目しているのが「Society5.0」です。

参考画像:Society5.0・Connected Industriesを実現する「新産業構造ビジョン」(2017/5/30、経済産業省)|スクリーンショット

参考画像:Society5.0・Connected Industriesを実現する「新産業構造ビジョン」(2017/5/30、経済産業省)|スクリーンショット

Society5.0・Connected Industriesを実現する「新産業構造ビジョン」(2017/5/30、経済産業省)

「必要なもの・サービスを、必要な人に、必要な時に、必要なだけ提供し、社会の様々なニーズにきめ細かに対応でき、あらゆる人が質の⾼いサービスを受けられ、年齢、性別、地域、⾔語といった様々な違いを乗り越え、活き活きと快適に暮らすことのできる社会。」(第5期科学技術基本計画)

「人間社会から計算機自然へ」MOA大学特別講義Vol.2落合陽一先生

(2017/8/27、MOA大学メディア)

つまり、あれだけ多様性があっても、どうやったらコンピューターで、多様性のある人間のままいけるかっていうのが次の時代の勝負なんじゃないかなと僕は思ってます。

それってつまり、一人一人がわりと好きな方向に向いててもまあ社会が成立するようになってきたのかなと。

これまでの社会は、あらゆるものを標準化することによって、人間がその標準化された社会に合わせて生活をすることで問題を解決してきましたが、Society5.0では、多様な違いを持ったままで、必要なサービスを、必要な時に、必要な分だけ提供される社会になっていくことを目指しています。

みんなが自由に行動していても社会が成立するようになるようなテクノロジーが生まれてきており、歩容認証技術の向上はこの分野に役立てられるようになるのではないでしょうか。







【参考リンク】
続きを読む 深層学習を用いた高精度歩容認証技術によって、個人認証・個人識別が可能になり、未来科学捜査やゲートのない世界の実現の可能性がある|#大阪大学

チャットボット型電子カルテ「ドクターQ」の医療系AIベンチャーNAM、ICO(NAMコイン)実施 100億円の資金調達を目指す

【目次】




■チャットボット型電子カルテ「ドクターQ」の医療系AIベンチャーNAM、ICO実施 100億円の資金調達を目指す

参考画像:NAMホワイトペーパー(2017/11/11、NAM)|スクリーンショット

医療系AIベンチャー企業のNAM  12月24日、ICO(仮想通貨技術による資金調達)実施  国内外から100億円の資金調達を目指す

(2017/11/28、atpress)

 NAMは2017年12月24日に「NAMコイン」と称する「トークン」を「1,200億NAM」発行、「600億NAM」の販売をNAMのWebサイト上( http://namcoin.net/ )で開始します。「トークン」とはデジタル権利証であり、主要仮想通貨などと交換できます。同年12月24日から翌年1月31日までの39日間ICOを実施、NAMコイン購入者に仮想通貨「イーサリアム」をNAMのウォレット(仮想通貨を保管する電子財布)に送金してもらうことで資金を調達します。NAMコインはNAMが開発した製品の購入やサービスの利用にも使用できます。
 調達した資金は、以下四つの医療業界向けAIサービスの研究開発費用などに充当します。

<NAMが提供する医療業界向けAIサービス>
(1)ドクターQ
  サービス内容:人工知能(AI)を利用した問診ボット(2018年1月開始)
(2)NAMインスペクション
  サービス内容:機械学習を利用した疾患予測モデル(2018年3月開始)
(3)NAMヘルス
  サービス内容:人工知能(AI)が推薦する健康食品(2018年5月開始)
(4)NAMカルテ
  サービス内容:深層学習とブロックチェーンを使った次世代カルテシステム(2019年1月開始予定)

NAMは、AIを活用した問診ボット、機械学習を利用した疾患予測システムなど医療業界向けAIサービスの研究開発費用などへの資金に充てるため、2017年12月24日から2018年1月31日までの39日間、ICO(イニシャル・コイン・オファリング=仮想通貨技術を使った資金調達)を実施し、100億円の資金調達を目指すそうです。

→ #ICO とは?簡単にわかりやすく!|ICOとIPOはどう違うの?|トークンって何?【初心者向け用語集】 について詳しくはこちら

【追記(2017/12/27)】

ICOのスケジュールに関する重要なお知らせ(2017/12/21、NAM)によれば、販売時期を延期するそうです。

株式会社NAMのICOに関する説明動画

【記者発表ダイジェスト】医療系AIベンチャー企業のNAM 12月24日よりICO実施

【参考リンク】

(1)人工知能(AI)を利用した問診ボット

医療系AIベンチャー企業のNAM チャットボット型電子カルテ「ドクターQ」を 1月から医療機関向けに提供開始

(2017/11/29、atpress)

医師が本システムを利用していれば、医師代わりのチャットボットからの問診を受けたり、自分自身のカルテを閲覧したりすることができます。医師は、「ドクターQ」のサービスウェブサイトにアクセスすることで、患者の経過を把握し、ボットを通して患者と接触することができます。電子カルテのフォーマットに沿う形式でチャットボットが医師の代わりにLINEのチャット画面を通して患者に経過を質問します。

 本システムの特徴は次の三つの情報を自動で収集、整理できます
 (1)カルテに記載するべき患者情報
 (2)医師がフォローするべき患者情報
 (3)患者が気にするべき診療情報

 患者は「カルテを見せて」「薬を見せて」とドクターQに送ると、処方された薬の一覧や過去のカルテをLINE上で閲覧することができます。医師はドクターQを利用しウェブサイトからのカルテの閲覧と患者への返信が可能です。

チャットボット型電子カルテ「ドクターQ」は電子カルテのフォーマットに沿う形で医師の代わりにチャットボットが患者に経過を質問し、患者情報や診療情報を自動で収集・整理ができるそうです。

これまでにも、服薬忘れや受診中断による症状の悪化の問題とそれを解決する方法について取り上げてきました。

これまでにもオンライン診療や電話でのアドバイスによって治療効果が向上するという結果が出ていますし、また、薬の飲み忘れ問題をテクノロジーで解決するアイデアもこれから徐々に浸透していくと思います。

ただ現状では医療現場ではどうしても把握できない情報があるそうです。

現在の医療現場が抱える重大な課題の一つは、医師が患者の経過を把握するためには、患者側から自発的にそれを医師に伝えるしかないという点です。医師は来院した患者に対しては適切な診察と治療を行いますが、その結果を把握することは簡単ではありません。患者は経過が良くなった場合、それを医師には報告しません。また自覚症状の少ない慢性疾患である場合、治療を自己判断で中断してしまうことがあります。例えば生活習慣病の患者が継続して病院に通う割合は4割程度との調査結果もあるなど、医師は経過を把握できていません。

医師が患者の治療経過を把握するためには患者から伝える必要がありますが、受診を自己判断で中断したり、薬を飲み忘れていたりして、きちんとした情報が伝わりにくいのです。

世界初のデジタルメディスン「エビリファイ マイサイト(ABILIFY MYCITE®)」 米国FDA承認|大塚製薬・プロテウスでは、服薬状況をチェックするために、は錠剤に胃液に接するとシグナルを発すセンサーを組み込んだ「デジタルメディスン」で、患者さんの体に張り付けたシグナル検出器で服薬の日時や活動量などのデータを記録し、そのデータをもとに、患者さん自身がアプリで服薬状況や活動量を確認したり、医師や看護師などの医療従事者と情報共有することにより、アドヒアランス(患者が積極的に治療方針の決定に参加し、その決定に従って治療を受けること)を向上し、治療効果を高めることが期待されています。

チャットボット型電子カルテ「ドクターQ」では、医師の代わりにチャットボットが患者に経過を質問し、患者情報や診療情報を自動で収集・整理ができることを目的としていますが、気になるのは、例えば患者が薬を飲み忘れていてもそれを知られたくないと思ってチャットボットに対して正直に話さないというケースがあった場合、期待する情報は得られないということになります。

将来の鍵となるのは、医師と患者におけるコミュニケーションの中から患者が付きたくないけどついてしまう噓を読み取ったり、患者さん自身も気づいていない病気の兆候となるサインを見つけることだと思いますが、それをどこまで遠隔医療でできるようになるかが気になるところです。

(2)機械学習を利用した疾患予測モデル

さまざまな企業や研究機関でビッグデータを用いて人工知能(AI)や機械学習(マシンラーニング)で解析し、病気の発症を予測するシステムの開発が行なわれています。

機械学習において重要なのは、どれだけ多くのデータを用意できるかにあり、つまりはデータを持つ医療機関と連携ができるかにかかっているのではないかと考えられます。

(3)人工知能(AI)が推薦する健康食品

どのようなアプローチで推薦するのかが気になるところですが、最も納得のいく方法の一つが「遺伝子検査」に基づいて、遺伝子にあった食品をおすすめするというサービスだと思います。

「遺伝子検査」による予測医療で、人は100歳まで生きられるか?によれば、アンチエイジング医療の最先端は、「予防医学(体の老化の兆候を早めに発見して「老化を予防」する医学)」から遺伝子検査による「予測医療」へと向かっており、すでに一部のクリニックでは「遺伝子検査」による予測医療がはじまっているそうです。

創薬は、ビッグデータ活用で激変する〜奥野恭史・京都大学教授/理化学研究所副グループディレクター

(2017/1/17、Top Researchers)

ゲノムの配列には個人個人の体質を区別する情報が入っていますので、その医学的解釈が出来れば、私たち一人一人の体質にあったオーダーメードの医療が可能になります。この夢の医療を「ゲノム医療」と呼んでいるのです。

遺伝的に特定の病気になりやすい体質、よくいわれるのが、家族歴とかある病気になりやすい家系というものは存在していて、そうした遺伝情報がゲノムに書かれており、ゲノムを解析することによって病気の原因を知ったり、治療法を選んでいくことを「ゲノム医療」と呼ぶそうです。

遺伝と健康問題は大きくかかわっており、メタボリックシンドローム糖尿病高血圧・心筋梗塞・肺がん・骨粗鬆症・アレルギー・乳がん ・アルツハイマー病など様々な病気になりやすい遺伝子を持つかどうかの検査を受けることができるそうです。

どんなに健康に良いといわれる食べ物であっても、人によっては健康に悪い食べ物がありますが、遺伝子検査を受けることによって、様々なメディアの情報に踊らされることなく、自分にとっては安全といわれる食べ物を選ぶことができるようになるはずです。

ただ、遺伝子検査をすることによって、病気のリスクを下げる期待ができる一方、遺伝子情報は究極の個人情報ともいえるため、その扱いには慎重にならざるを得ませんので、遺伝子情報を守るテクノロジーがカギになってくるのではないでしょうか?

遺伝子は、変えられる。――あなたの人生を根本から変えるエピジェネティクスの真実

新品価格
¥1,944から
(2017/6/26 10:36時点)

【関連記事】

(4)深層学習とブロックチェーンを使った次世代カルテシステム

「データヘルス・ポータルサイト」に6773万人分の健康診断、医療費、生活習慣などのデータを統合|#東大によれば、東京大は、国内6773万人分の健康診断、医療費、生活習慣などのデータを集計した分析・支援するウェブサイト「データヘルス・ポータルサイト」を運用するそうです。

厚生労働省、個人の医療データの一元管理で医療の効率化目指す 2020年度からでは、厚生労働省は、過去の病院での治療歴や薬の使用状況、健診結果など様々な情報を一元化したデータベース「PeOPLe(ピープル)」(仮称)を2020年度からの運用を目指すということについて取り上げましたが、今回、1399の健康保険組合(2946万人)と、中小企業の全国健康保険協会(協会けんぽ、3827万人)が持つデータを統合し、今後は、1880ある市町村国民健康保険(3294万人、国保組合含む)も加入も検討することから、ほぼ全国民がデータヘルス・ポータルサイトに参加することになり、医療・健康・介護を把握できるプラットフォーム作りの基盤となりそうです。

ICT医療においては、ICTを活用した個人の健康管理がスタートであり、カギとなります。

医療・健康分野におけるICT化の今後の方向性(平成25年12月、厚生労働省)によれば、

健康寿命を延伸するためには、ICTを利用した個人による日常的な健康管理が重要

だと書かれています。

ICTとは、Information and Communication Technology(インフォメーション・アンド・コミュニケーション・テクノロジー:情報通信技術)の略です。

ICTを活用した医療分野への活用の例としては次の通り。

  • 電子版お薬手帳や生活習慣病の個人疾病管理など患者・個人が自らの医療・健康情報を一元的、継続的に管理し活用する仕組み
  • 地域包括ケアシステム(電子カルテ情報を地域の診療所が参照する)
  • ICTを活用してレセプト等データを分析し全国規模の患者データベースを構築し、疾病予防を促進

参考画像:「新産業構造ビジョン」(2017/5/29、経済産業省)|スクリーンショット

経済産業省の「新産業構造ビジョン」によれば、個人が自らの生涯の健康・医療データを経年的に把握するため、また、最適な健康管理・医療を提供するための基盤として、健康・医療・介護のリアルデータプラットフォーム(PHR:Personal Health Record)を構築し、2020年度には本格稼働させていくことが必要と提案されています。

NAMでは、深層学習とブロックチェーンを使った次世代カルテシステムを開発するということでしたが、エストニア、医療データの記録・管理にブロックチェーン技術を活用すべく試験運用中|日本で導入するにはどのようなことが必要か?によれば、エストニアでは、医療データの記録・管理にブロックチェーン技術を活用すべく試験運用が行なわれているそうです。

【参考リンク】

医療データの記録・管理にブロックチェーン技術を活用するとどう変わるのでしょうか?

Estonia prescribes blockchain for healthcare data security|Health Matters(2017/3/16、pwc)を参考にまとめてみます。

●個人の医療情報・健康記録を安全に保管することができる

First, health records can be stored securely in a ledger on which all participants (health professionals, patients, insurers) can rely.Doctors, surgeons, pharmacists and other medical professionals all have instant access to an agreed set of data about a patient.

ブロックチェーン技術を活用することで医療情報の偽造・改ざんを防止すると同時に、暗号化技術によって非常に重要な情報である個人の医療情報・健康記録を安全に保管することができます。

これまでは医療情報のような個人情報は巨大な仲介役が管理していましたが、ブロックチェーン技術を活用すれば、そのデータは自分が管理することができるようになります。

データを企業に受け渡すことでサービスを利用している現代ですが、ブロックチェーンが浸透すれば、自分の情報を自分でコントロールすることができるようになるのです。

●医療従事者が患者のデータに即座にアクセスできる

必要な情報だけを医療従事者が即座にアクセスすることができるようになります。

あまりなりたくはないものですが、病気や事故になったとしても、即座に医療従事者がそのデータにアクセスすることにより治療が受けられるようになるわけです。

Its Patient Portal gives citizens access to medical documents, referral responses, prescriptions, and insurance information.Individuals can also use the Portal to declare their intentions regarding blood transfusions and organ donation.

エストニアの患者ポータルでは、医療文書・処方箋・保険情報にアクセスができ、輸血や臓器提供に関する意向も宣言することができるそうです。

つまり、まとめると、医療データの記録・管理にブロックチェーン技術を活用することにより、次のような変化が起こります。

  • 医療情報の偽造・改ざんを防ぐ
  • 個人の医療情報・健康記録を安全に保管
  • 医療情報などの個人情報が自分の手に戻ってくる
  • 患者や医療従事者が医療情報に即座にアクセスできる

【関連記事】




■まとめ

NAMは、AIを活用した問診ボット、機械学習を利用した疾患予測システムなど医療業界向けAIサービスの研究開発費用などへの資金に充てるため、ICO(イニシャル・コイン・オファリング=仮想通貨技術を使った資金調)を実施し、100億円の資金調達を目指すそうです。

NAMはAIとブロックチェーンを組み合わせるなどして、現在の医療システムに変革を起こすことを目指しています。現代の医療システムにおいて、特に患者のカルテ連携や医療費の請求サイクルの構造を見直し、問題の解決を図ります。NAMの提供するシステムはカルテ連携から、僻地医療、医師間の連携、最先端のAIモデルの導入などの基盤となるシステムであり、次世代の医療に大きな成果を上げられると考えています。本システムをプラットホームとして拡張するには、複数の病院との連携、サーバーの強化、人材の確保を含めた莫大な開発費用と設備費用が必要です。

気になるのは「お金」の問題ではなく、先程紹介したような(1)人工知能(AI)を利用した問診ボット、(2)機械学習を利用した疾患予測モデル、(3)人工知能(AI)が推薦する健康食品、(4)深層学習とブロックチェーンを使った次世代カルテシステム、というような幅広い分野に向かっていくために必要な人材が集まるのかという点と政府・企業・医療機関とのパートナーシップを築けるかどうかではないでしょうか?

●人材の面

いま、世界の大企業は「AI人材」を食い尽くそうとしている

(2016/1/3、WIRED)

ここ数年の間に、大手企業は、聞いたこともないような多くのAIスタートアップを先を争って手に入れてきた。ツイッターは、Mad Bit、Whetlab、Magic Ponyを買収した。アップルはTuriとTuplejumpを手に入れた。Salesforceは、MetaMindとPrediction I/Oを獲得し、IntelはNervanaを獲得した。そしてこれはリストのほんの一部にすぎない。

買収を行っているのは、ソフトウェア会社やインターネット企業だけではない。AIをフィジカルなプロダクトに取り入れているサムスンやGEのような大手企業もまたしかりである。

大手企業がAIスタートアップを買収することで人材の確保をおこなっており、その人材プールはすでにはほとんど残っておらず、企業によってはそうした人材を確保できないということも起きています。

機械学習技術を構築するのは、標準的なソフトウェアエンジニアリングとはまったく異なり、コーディングすることよりもむしろ、膨大な量のデータから結果をうまく引き出すことが必要だからだ。

普通のプログラマーではダメなのだそうで、データサイエンティストが求められているようです。

ヘルスケア分野でIOTを活用する実証実験開始|IOTで市民の健康データを取得し、新サービス創出、雇用創出、生活習慣病の予防を目指す|会津若松市によれば、福島県会津若松市がヘルスケア分野でIoTを活用したプラットフォーム事業の実証実験を開始し、スマホアプリやウェアラブルデバイスなどから取得した市民の様々な健康データを集約し、オープンデータ化し、そのデータを活用して新サービスの創出、データサイエンティストなどの雇用創出、医療費の削減などを目指していくとお伝えしましたが、「データサイエンティスト」という職業は現在最も必要とされる人材といえるのではないでしょうか。

AIによって雇用が減っていくのではないかという不安を抱えている人もいると思いますが、AIが活用されるような分野、より具体的には大量のデータから必要な情報を引き出すことが必要とされる分野では人材の取り合いが行なわれているのです。

参考画像:人工知能の研究開発目標と産業化のロードマップ(2017/3/31、人工知能技術戦略会議)|スクリーンショット

AI分野に対する人材が不足していて、2020年には国内で約4万8000人が不足するという調査(経済産業省「IT人材の最新動向と将来推計に関する調査結果」(平成28年3月、委託:みずほ情報総研株式会社))もあるそうです。

AI人材が約5万人不足、東大阪大のAI講座は即戦力育成の呼び水となるか

(2017/7/31、MONOIST)

2017~2019年度で総額約2億2000万円を投資し、3年間で250人以上のAI人材を育成する計画だ。

政府が2016年度に立ち上げた「人工知能技術戦略会議」では、AIの研究開発や産業化を担う人材育成を重視している。

AI人材の即戦力を育成することが急務となる中、新エネルギー・産業技術総合開発機構(NEDO)は、電機や機械など製造業を中心にAI(人工知能)分野の即戦力人材を育成する特別講座「AIデータフロンティアコース」を、大阪大学と東京大学に開講すると発表しました。

【参考リンク】

参考画像:人工知能の研究開発目標と産業化のロードマップ(2017/3/31、人工知能技術戦略会議)|スクリーンショット

産業化ロードマップを実現するためには、3つの知識・技能を有する人材を育成することが求められるそうです。

1.人工知能技術の問題解決(AIに関する様々な知識、価値ある問題を見付け、定式化し、解決の道筋を示す能力)

2.人工知能技術の具現化(コンピュータサイエンスの知識、プログラミング技術)

3.人工知能技術の活用(具体的な社会課題に適用する能力)

AI分野に対する人材が不足していて、2020年には国内で約4万8000人が不足するという調査もある中、その人材を育成することにも取り組んでいるようですが、こうした人材は世界中から取り合いになるでしょうから、その点が気になるところです。

●パートナーシップの面

もう一つは、政府・企業・医療機関などとのパートナーシップを築くことができるかという点です。

例えば、機械学習において重要なのは、どれだけ多くのデータを用意できるかにあり、つまりはデータを持つ医療機関などと連携できるか、が挙げられます。

ブロックチェーンがインフラとなるためには、政府や行政、企業の連携との連携は欠かせないものになります。

『サードウェーブ 世界経済を変える「第三の波」が来る』(著:スティーブ・ケース)では、第三の波(あらゆるモノのインターネット)によって、あらゆるモノ・ヒト・場所が接続可能となり、従来の基幹産業を変革していく中で、企業や政府とのパートナーシップが重要になると書かれています。

サードウェーブ 世界経済を変える「第三の波」が来る (ハーパーコリンズ・ノンフィクション)

新品価格
¥1,380から
(2017/11/12 10:31時点)

第二の波では、インターネットとスマートフォンの急速な普及によってソーシャルメディアが激増し、盛況なアプリ経済が誕生した。その中でもっとも成功を収めたスナップチャットやツイッターのような企業は、小規模なエンジニアリング・チームからスタートして一夜にして有名になり、第一の波の特徴であったパートナーシップをまったく必要としなかった。しかし、こうしたモデルは現在がピークであり、新たな時代は第二の波とはまったく違う―そして最初の波とよく似た―ものになることを示す証拠が増えている

ブロックチェーンが次のレイヤーになると、社会は大きく変化をしていきますが、社会問題を解決する手段として、一人の力ではなく、これからますますいろんな人たちとのパートナーシップが重要になってくるでしょう。

最後にこの言葉をご紹介したいと思います。(アフリカのことわざなのだそうです)

別所哲也(俳優)|有名人の英語ライフ|TOEIC SQUARE

「If you go fast, go alone. If you go further, go together. (早く行きたければ、一人で行きなさい。より遠くへ行きたいのであれば、みんなで行きなさい)」




【関連記事】

【遠隔医療 関連記事】

【テクノロジーと医療 関連記事】

【関連記事】